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Exploring brain effective connectivity of early MCI with GRU_GC model on 
resting-state fMRI

Lei Wang, Weiming Zeng, Le Zhao and Yuhu Shi

Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China

ABSTRACT
Background:  Investigating the functional interactions between different brain regions and revealing 
the transmission of information by computing brain connectivity have great potential and 
significance in the diagnosis of early Mild Cognitive Impairment (EMCI).
Methods:  The Granger causality with Gate Recurrent Unit (GRU_GC) model is a suitable method 
that allows the detection of a nonlinear causal relationship and solves the limitation of fixed time 
lag, which cannot be detected by the classical Granger method. The model can transmit time series 
signals with any transmission delay length, and the time series can be screened and learned 
through the gate model.
Results:  The classification experiment of 89 EMCI and 73 neurologically healthy controls (HC) shows 
that the accuracy reached 87.88%. Compared with multivariate variables GC (MVGC) and Long 
Short-Term Memory-based GC (LSTM_GC), the GRU_GC significantly improved the estimation of 
brain connectivity communication. Constructing a difference network to explore the brain effective 
connectivity between EMCI and HC.
Conclusions:  The GRU_GC can discover the abnormal brain regions, including the parahippocampal 
gyrus, the posterior cingulate gyrus. The method can be used in clinical applications as an effective 
brain connectivity analysis tool and provides auxiliary means for the medical diagnosis of EMCI.

Introduction

Functional magnetic resonance imaging (fMRI) mainly refers 
to blood oxygen levels-dependent fMRI and has the advan-
tages of noninvasive, repeatable, and high spatial resolution. 
It is not only a tool for generating brain activation maps but 
also a means to study neural network dynamics by tracking 
the response characteristics on different temporal and spatial 
scales (Logothetis et  al., 2001). Another merit of fMRI is 
that it can track signal changes in real-time and obtain time 
series of brain activities (Friston et  al., 1995). The fMRI has 
been widely used to study pathogenesis, locate brain func-
tional regions, and detect mental diseases such as mild cog-
nitive impairment (MCI) and Alzheimer’s disease, with MCI 
further divided into early MCI (EMCI) and late MCI (LMCI) 
stages (Deng et  al., 2018; Shi et  al., 2015, 2020; Zhao 
et  al., 2020).

Brain Connectivity (BC) based on fMRI provides broader 
research directions for further revealing the internal working 
mechanism of the brain and the occurrence of diseases. BC 
can be divided into Functional Connectivity (FC) and 
Effective Connectivity (EC) (Friston, 1995). FC is the spatial 
connectivity of brain functional regions, describing whether 
there is connectivity or interactive information between 
brain regions, commonly used methods such as independent 
component analysis (ICA) (Shi et  al., 2018). EC refers to the 

directional connectivity of brain neurons or brain regions to 
form brain networks, and its edges represent the directional 
weight of neurons or brain regions to another, reflecting the 
correlation and directionality between brain regions 
(Schlösser et  al., 2008). Compared with FC, EC can reflect 
the flow of information between neurons or brain regions, 
and the causality influence of one brain region (neuron sys-
tem) on another. It is a trend to reveal the information 
transmission and interaction between brain regions and 
study the working mechanism of the brain. The methods 
used by EC to study the brain include the Structural 
Equation Model (SEM), Dynamic Causality Model (DCM) 
(Xin & Biswal, 2014), Granger Causality Analysis (GCA) 
(Riley et  al., 2018). GCA was defined by Wiener in 1956 
and Granger proposed in 1969 (Granger, 1969; Porta & Faes, 
2016). K. J. Friston introduced it into the field of neurosci-
ence to measure the brain electrical activity between two 
brain regions and afterward achieved outstanding application 
effects. GCA requires no prior knowledge and only relies on 
the characteristics of time series. It is a statistical method to 
study the flow of information between time series (Friston 
et  al., 2013). Therefore, it is widely used in different data 
related to time series, such as electroencephalogram (EEG) 
and fMRI (Dimitriadis et  al., 2012).

The original GCA is a linear method based on a 
time-domain vector autoregressive model. Although this 
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method improves the understanding of brain activity and cog-
nitive function, its drawbacks are obvious. Linear Granger 
Causality Model (LGCM) cannot simply judge virtual causal-
ity because the nervous system of the brain has potential vari-
able problems (Seth et  al., 2013). At the same time, it turns 
out that the time series of scanned fMRI data is often highly 
non-linear (Logothetis et  al., 2001). In addition, the premise 
of LGCM requires the time series to be random and widely 
stable which requires that the mean and variance are constant. 
Otherwise, it is easy to get incorrect regression values (Bressler 
& Seth, 2011). Non-stationary data can be processed using 
sliding time windows to obtain local stability. Scholars have 
put forward different optimization solutions to the limitations 
of the above LGCM, such as the Partial Granger Causality 
(PGC) to eliminate the influence of latent variables in the 
nervous system (Guo et  al., 2008). Then, in Multivariate 
Variables Granger Causality (MVGC), the bivariate is extended 
to multivariate to evaluate the causality between time series to 
measure the directional power transfer in the frequency 
domain, which is called the directional transfer function 
(DTF) (Deshpande et al., 2010). Linearity, however, is a poten-
tial drawback of DTF. In recent years, with the rise of deep 
learning, Granger causality and neural networks have been 
combined. Granger causality based on the neural network 
directly characterizes the relationship between brain signals, 
replacing vector autoregression (Farokhzadi et  al., 2018; 
Khadem & Hossein-Zadeh, 2014; Montalto et  al., 2015). 
Therefore, it is suitable for non-stationary fMRI time series, 
and the performance has been improved (Guo et  al., 2020). 
Although it is capable in non-linear situations, it usually 
requires a long stationary signal and is susceptible to noise 
(Pereda et  al., 2005). And more importantly, the transmission 
of signals in brain regions is not certain to be completed in a 
fixed time, so the limitation of the methods is fixed by the 
past time lag. They used the past lags of time series to predict 
current information, while the model needs to be set artifi-
cially. Meanwhile, it makes little full use of the time sequence 
information of the data.

The introduction of complex learning networks such as 
Recurrent Neural Networks (RNN) further increases the 
exploration ability of brain connectivity in fMRI data. These 
deep learning algorithms can automatically study from the 
input of fMRI data to discover high-level information hid-
den in it. The RNN network is more focused on the cor-
relation of data in the time periods and also considers the 
data of past time points, which just meets the needs of 
learning fMRI data in time series. Long Short-Term Memory 
(LSTM) is a special RNN that can learn long-term depen-
dent information (Hochreiter & Schmidhuber, 1997). LSTM 
removes or adds information to the cell state through a 
well-designed structure called "gate". The LSTM has now 
achieved advanced results in various sequence processing 
tasks (Graves, 2012), such as speech recognition, image cap-
tioning and brain connectivity analysis (Greff, 2016; Wang 
et  al., 2018). The shortcoming of LSTM is computationally 
higher (Group, Nlc, 2017) and largely depends on the hard-
ware requirements. As a variant of the LSTM network, GRU 
not only has similar performance to the LSTM network but 
also is easier to calculate than LSTM (Cho et  al., 2014). 

These advanced recurrent units in GRU are better than the 
most of traditional recurrent units such as tanh units 
(Chung et  al., 2014). According to the above, the GRU_GC 
model used in this paper is focused on overcoming the 
main disadvantages of the non-modified Granger method 
based on linear autoregressive models and proposing an 
alternative for existing nonlinear methods (Rosoł et  al., 
2022). The GRU_GC and LSTM_GC were applied to esti-
mate multivariate brain connectivity and experimental 
results show that GRU has better estimation performance in 
brain effective connectivity than LSTM. The model takes 
time series of arbitrary lag time as the input and the effec-
tive connectivity matrix as the output, while learning the 
flow of information in the data. Based on the matrices, 
effective connectivity networks were constructed, and 
explored the functional activities of EMCI and neurologi-
cally healthy control (HC) brains in the resting-state.

Based on the above analysis, GRU_GC was applied to the 
research of EMCI brain regions, and the EC matrices were 
used to classify EMCI patients and HC subjects. It provides 
an auxiliary method for the clinical diagnosis of EMCI. The 
main organization of this paper is enumerated as follows: 
The second part introduces the materials and methods. The 
third part is about the results. The fourth part and the fifth 
part are the discussion and the conclusion, respectively.

Materials and methods

Firstly, the resting-state fMRI (rs-fMRI) data with multiple 
time points were preprocessed and the data was used to select 
the region of interest (ROI) through prior knowledge. Then, 
the effective connectivity between brain regions was acquired 
by using the GRU_GC. Next, according to the ranking of fea-
ture importance scores, the features were selected and input to 
the random forest (RF) classifier for classification. After that, 
the difference network and hub nodes were built through the 
obvious different edges found by two sample T-test. Finally, 
we analyzed the EMCI brain region changes according to the 
results of DN and selected features. The overall experimental 
process is shown in Figure 1.

Data acquisition and preprocessing

In this paper, two groups of subjects including 89 EMCI 
patients and 73 neurologically healthy controls were selected 
from the ADNI database1 (http://adni.loni.usc.edu/) for the 
experiments. ADNI is the multisite observational study of 
normal aging, MCI, and AD. MCI subjects are sub-classed 
in two subtypes, EMCI and LMCI in ADNI, based on the 
WMS-R Logical Memory II Story A score. The EMCI is 
considered to reflect those at the earlier point in the clinical 

1.	 Data used in the preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu) that was launched in 2003 and led by Principal 
Investigator Michael W. Weiner, MD. For up-to-date information, 
see www.adni-info.org.

http://adni.loni.usc.edu/
http://www.adni-info.org
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spectrum, while LMCI is at the later point to progress to 
AD (Jitsuishi & Yamaguchi, 2022). According to the ADNI 
protocol, the data were all scanned by Philips’ 3.0 Tesla. 
During the scanning, the subjects needed to be supine with 
the whole body relaxed in the nuclear magnetic resonance 
equipment. The head should be fixed as far as possible to 
avoid the experimental error.

The fMRI images were acquired using an echo-planar imag-
ing (EPI) sequence with a repetition time (TR) of 3000.0 ms; 
Echo Time (TE) = 30 ms; Time Points = 140s; Flip Angle (FA) 
= 80.0 degree; Slices = 48. The Pixel Spacing in the X and Y 
dimensions was 3.3 mm, and the slice thickness was 3.3 mm.

The Data Processing Assistant for the Resting-State 
Toolbox DPABI (http://rfmri.org/dpabi) in the 
MATLAB2018b platform was used to preprocess the fMRI 
data of EMCI and HC groups (Yan & Zang, 2010). The pre-
processing steps were as follows: (1) Convert the data from 
DICOM to NIFTI. (2) Remove the first 10 time points. (3) 
Slice timing with slice 47 as the reference. (4) Head motion 
correction, as well as offset and angular motion correction. 
(5) Spatial normalization using EPI templates and reslicing 
to 3 mm × 3 mm × 3 mm voxels. (6) Smoothing with a 
Gaussian kernel function (FWHM = 4 mm) to reduce the 
noise of the different signals. (7) Detrending. (8) Nuisance 
covariates regression. (9) Time series of regions of interest 
was extracted.

ROIs selection

The definition of ROIs adopted in this paper was derived 
from the 25 brain regions with abnormal functions in the 
AAL template related to EMCI, LMCI and AD proposed in 
the reference (Guo et  al., 2017), as shown in Table 1.

Granger causality

Granger causality analysis method is a common method  
for effective connectivity judgment in multivariate  
time series (Goebel et  al., 2003; Roebroeck et  al., 2005).  
The Granger causality assumes that the time series 
X X X Y Y Y Z Z Z

t t t
= … …{ } = … …{ } = … …{ }1 1 1

, , , , , , , , , , ,  are sta-
ble, if the time series X can improve the accuracy of future 
prediction of X with the addition of time series Y, then Y is 
called the causality of X. To test whether Y is the cause of 
X, Granger causality analysis is estimated by fitting a vector 
autoregressive model to the time series with the time lag of 
P. Under a given time series Z, it is able to indicate whether 
the past of the Y signal helps to reduce the variance of the 
prediction error of X without the influence of Z. In this case 
of conditional causality analysis, the linear autoregressive 
equations are as follows:
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where a c a c bp p p p p, , , ,
′ ′ ′ are the best regression parameters 

of the model, the model order P can be determined by the 
Akaike Information Criterion (AIC) or Bayesian Information 
Criterion (BIC), ξt, ξt’ are the predicted residuals. The qual-
ity of the prediction is determined by the variance σ of the 
error in the prediction. Under the condition of time series 
Z, σ ξ( )

t
 is the error variance in predicting X when time 

Figure 1. O verview of our proposed framework for EMCI classification and constructed difference network to seek the changes in brain regions between EMCI 
and healthy control group. (EC Matrix: effective connectivity matrix, DN: difference network, RF classifier: random forest classifier, Feature Selection: tree-based 
feature selection.).

http://rfmri.org/dpabi
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series X is used, whereas σ(ξt’) the error variance in predict-
ing X when time series X and Y are used. Therefore, the 
intensity of Granger causality Y → X under the condition of 
Z can be defined as:

	 F
Y X Z→ =

′|
ln
σ ξ
σ ξ
( )

( )
	 (3)

If there is no direct causality between X and Y, but indirect 
causality between them is caused by Z, then σ ξ σ ξ( ) ( )

t t
= ′ , 

thus F
Y X Z→ =

|
0. This indicates that under the condition of Z, 

the addition of Y does not improve the prediction accuracy 
of X, meaning there is no causality between Y and X.

GRU_GC model

The traditional neural network cannot use the previous 
information to intervene in the subsequent prediction, while 
the RNN can solve this problem by considering the output 
of the previous time step in the transmission. RNN allows 

the continuous transmission of information, in other words, 
RNN is a neural network that reuses structural units (Graves, 
2012) and this continuous transmission is the power of this 
network. As a member of RNN, GRU holds the superiority 
of the time dimension. At the same time, GRU can reduce 
the calculation based on maintaining the advantage of LSTM 
in solving the gradient descent problem in backpropagation 
(Sutskever et  al., 2014) which is more convenient.

In Figure 2, the GRU unit structure diagram is shown, 
inputs of the cell are current time information x

t
 and his-

torical information h
t−1. Intuitively, the reset gate r deter-

mines how the current time series x
t
 combined with 

previous memory h
t−1, and update gate z defines the 

amount of h
t−1 saved to the current time step. After two 

gates, new information was calculated and passed to the 
next cell. Unlike the LSTM, there are only two gates in 
this unit, while LSTM has three, including forget gate. 
Importantly, since ( )1− z  has the same effect as the forget 
gate in LSTM, GRU can achieve same even better perfor-
mance. σ  is the sigmoid function that transforms informa-
tion into a value in the range of 0 ~ 1, tanh function 

Table 1. ROI s selection. This table is the set of selected brain regions and No stands for the ROI serial number in this paper. ABBR. stands for the abbreviation of 
brain regions, followed by the number in brackets that corresponds to the number in the AAL template. The brain region represents the brain region name.

No Abbr. ROI No Abbr. ROI

1 Frontal_Mid_Orb_L(9) Left   Middle frontal gyrus, 
orbital part

14 Cuneus_R(46) Right   Cuneus

2 Frontal_Inf_Oper_L(11) Left   Inferior frontal gyrus, 
opercular part

15 Lingual_L(47) Left   Lingual gyrus

3 Frontal_Inf_Tri_R(14) Right   Inferior frontal gyrus, 
triangular part

16 Occipital_Sup_L(49) Left   Superior occipital 
gyrus

4 Rolandic_Oper_R(18) Right   Rolandic operculum 17 Fusiform_L(55) Left   Fusiform gyrus
5 Supp_Motor_Area_L(19) Left   Supplementary motor area 18 Postcentral_R(58) Right   Postcentral gyrus
6 Olfactory_R(22) Right   Olfactory cortex 19 Parietal_Sup_R(60) Right   Superior parietal 

gyrus
7 Frontal_Sup_Medial_L(23) Left   Superior frontal gyrus, 

medial
20 Parietal_Inf_L(61) Left   Inferior parietal, but 

supramarginal and 
angular gyri

8 Insula_L(29) Left   Insula 21 Angular_R(66) Right   Angular gyrus
9 Cingulum_Ant_L(31) Left   Anterior cingulate 

and  paracingulate gyri
22 Thalamus_L(77) Left   Thalamus

10 Cingulum_Post_L(35) Left   Posterior cingulate gyrus 23 Temporal_Pole_Sup_R(84) Right   Temporal pole: 
superior temporal gyrus

11 ParaHippocampal_R(40) Right   Parahippocampal gyrus 24 Temporal_Mid_R(86) Right   Middle temporal 
gyrus

12 Amygdala_R(42) Right   Amygdala 25 Temporal_Mid_R(88) Right   Temporal pole: 
middle temporal gyrus

13 Calcarine_R(44) Right   Calcarine fissure and 
surrounding cortex

Figure 2. GRU  unit structure diagram. h x
t t−1,  are the input of unit structure, h yt t,  are the output, and h

t
 as input to the next unit. r z,  are the reset gate and 

update gate, respectively. The symbols ⊙ inside the pink circle represents the “Hadamard product” operation, and + is “plus”. σ , tanh in the blue ellipses indicate 
functions, σ  is the sigmoid function.
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converts information to −1 ~ 1. The red lines represent the 
inputs to the r z,  at the current moment. The blue and 
green lines express the selection of the current time series 
and the previous information, and finally, the orange ones 
indicate the data passed to the next state and the output 
at that moment.

The GRU with the ability to remember long or short his-
torical information is endowed by the structure of the gates. 
Therefore, using GRU-based GC to model connectivity in 
given time series of different transmission lags, which can be 
well adapted to the problem of brain connectivity estima-
tion. In the process of using GRU_GC to calculate the brain 
effective connectivity, the time series is predicted by GRU 
and then calculating the causality with GC. The GRU_GC 
model can be defined as:

	 F
X GRU X Z

X GRU X Y Z
Y X Z

t t

t t t

→
− −

− − −

=
− +

− + +|

( ( ))

( ( ))
ln

t

t

σ
σ

1 1

1 1 1

	 (4)

where GRU is the Gate Recurrent Unit. GRU X Z
t t

( )− −+
1 1

 
and GRU X Y Z

t t t
( )− − −+ +

1 1 1
 used time series X, Z, and X, Y, 

Z as inputs in GRU, respectively. The time series prediction 
of brain regions is performed by GRU neural network, fol-
lowed by calculation of the predicted error variance to 
obtain the EC matrices between brain regions. GRU_GC has 
shown noteworthy advantages in detecting brain connectiv-
ity problems. First, compared with vector autoregressive 
models, nonlinear factors can be considered. Then compared 
with neural networks, this method considers the time 
dimension more comprehensively and retains historical time 
information. Maciej Rosoł et  al. have proved the model was 
able to detect non-linear causality, make accurate forecast-
ing, and not indicate false causality. The neural network-based 
approach is a suitable method that allows the detection of a 
nonlinear causal relationship, which cannot be detected by 
the classical Granger method. The GRU-based method over-
comes this problem by cycling time series and can predict 
more accurately.

Features selection and classifiers

In this paper, two methods were used to select features and 
classify two groups of subjects. Two ways including ran-
dom forest and support vector machine (SVM) were used 
to clear up the impact of the classifier and go a step fur-
ther to verify the advantages and necessity of the pro-
posed model.

Random forest
Before using effective connectivity matrices of 162 subjects 
to classify, the data is divided into 10 parts, among which 
eight parts are training sets for feature selection by sorted 
according to the feature importance and the remaining two 
are testing sets for classification.

The RF with the characteristics of high accuracy, strong 
robustness and convenient of use. The random forest was 
used for the classification test, and the feature attributes 
were added in order of feature importance score from the 

largest to the smallest for classification. Selected the fea-
tures with the highest classification accuracy as candidates 
and retained the highest accuracy by comparing the clas-
sification results. The features importance according to 
the Gini index. It is assumed that the proportion of the 
k-th sample in the current set D is listed as pk (k = 1,2, 
…, K), then the purity of D can be measured by 
Gini value:

	 Gini p p
k

K

k
( ) = −

=
∑1

1

2	 (5)

The Gini index reflects the probability that two samples 
randomly selected in set D have inconsistent category mark-
ers. Therefore, a set more purity, higher Gini index it is. The 
features importance means the sum of the Gini index 
decline. In general, the importance score measures the value 
of the attribute in the construction of the boosting decision 
tree in the model. The importance of an attribute is relative, 
as each attribute will be calculated and ordered. It means 
that the more an attribute is used in constructing the deci-
sion tree of the model, the higher its importance is. For the 
classification task, performance on the testing set was 
assessed using the accuracy of classification and the area 
under the receiver operating characteristic curve (AUC), in 
which an AUC of 1 indicates a perfect classifier while an 
AUC of 0.5 indicates a classifier that performs no better 
than random chance.

Support vector machine
Each subject brain effective connectivity matrix according 
to the GRU_GC model was arranged and reorganized in 
rows after removing the diagonal. It means that 600 fea-
ture attributes were concatenated into a single feature vec-
tor after removing diagonals, and each of them is 
connectivity strength between various brain regions. Then, 
the vector in which the lowest features’ weight was cycli-
cally deleted was used as the input features for the SVM 
classifier. To train and test the model, a 10-fold iterative 
cross-validation scheme was employed, in which the data 
were split into a training set (80%) and a testing set 
(20%) the same as the split in RF. An SVM was generated 
using the training set and its performance was assessed 
on the testing set. The output was the classification of 
each subject as EMCI or HC or the prediction for each 
subject.

Evaluation

To ensure that the addition of GRU can play a positive role 
in classifying EMCI and HC. The feature importance scores 
were calculated, and the RF algorithm was used for classifi-
cation. Furthermore, we repeated this process 20 times to 
measure the effectiveness of the proposed method and 
reported the averaged performance with standard deviation. 
For quantitative measurement, accuracy, sensitivity and spec-
ificity are used to test the stability and robustness of the 
classification, the formulas are as follows:
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Accuracy
TP TN

TP FN TN FP

Sensitivity
TP

TP FN

Specificity
TN

=
+

+ + +

=
+

=
TTN FP+

	 (6)

where TP means true positive which is the number of EMCI 
classified correctly, TN denotes true negative, which is the 
number of HC correctly classified, FP is false positive which 
means the number of HC classified as EMCI, and FN 
denotes false negative which is the number of EMCI classi-
fied as HC. Besides, the receiver operating curve (ROC) of 
classification also can be plotted and AUC for evaluation 
can be calculated, which is a better performance indicator 
than accuracy (Fawcett, 2005).

Results

Results of classification

Random forest
The effective connectivity matrices as feature sets and effec-
tive edges as features were repeated 20 times for feature 
selection and classification. Finally, four metrics were 
obtained: accuracy, sensitivity, specificity, and AUC. The 
classification performance of comparing the MVGC, LSTM_
GC and GRU_GC by using an RF classifier, is shown in 
Table 2. Figure 3 shows a boxplot of 20 times classification 
accuracy, specificity, and sensitivity. In the boxplot, the 
mean, variance, and other statistics of the three indicators of 

the experiments are shown. It can be seen the highest accu-
racy is 88% in the figure.

The reason for feature selection is that redundancy will 
affect the accuracy of the classification and increase the con-
sumption of time. In this paper, the tree-based feature selec-
tion algorithm was used to determine the contribution of 
the features to the classification by calculating their impor-
tance, so as to determine the marked features.

According to the maximal accuracy of 87.88% (88% in 
Figure 3) and the importance score, we fixed the selected 36 
features. Remarkable and stable classification accuracy 
(87.88%) can be reached using the selected features and the 
corresponding sensitivity and specificity were 80% and 
94.4%, respectively. The corresponding serial numbers of the 
top 10 features, which are brain regions’ effective edges as 
shown in Figure 4(a). As shown in Figure 4(b), The ROC 
curve is very close to the upper left corner, with an area of 
0.88, close to 1.

Table 2. C lassification performance of EC matrices by using GRU_GC and MVGC 
after repeated 20 times.

Method AUC Accuracy (%) Sensitivity (%) Specificity (%)

GRU_GC 0.807 79.70 85.28 73
LSTM_GC 0.573 62.73 73.61 49.67
MVGC 0.525 61.52 61.80 44

Figure 3. C lassification performance. Demonstrate the classification perfor-
mance after 20 repetitions. Box plot on classification accuracy, specificity, and 
sensitivity by GRU_GC model.

Figure 4.  (a) Top 10 important features in the importance ranking of 36 feature attributes. The horizontal axis represents the importance of features, and the 
vertical axis represents the EC between brain regions, such as (10, 4) means the feature from No.10 to No.4 in the EC matrices. (b) ROC curve of classification with 
36 feature attributes using random forest.
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Support vector machine
In addition to the random forest, there is also a support 
vector machine to classify the two groups of subjects. The 
EC matrices obtained from MVGC, LSTM_GC and GRU_
GC model are also used as the input of SVM. The results of 
the classification are shown in Figure 5. It can be clearly 
observed from the figure that GRU_GC model (blue in the 
figure) has the highest classification accuracy, followed by 
LSTM_GC (orange) and MVGC (yellow). The largest value 
of blue is 71.88%, while orange and yellow are 65.63% and 
68.75%, respectively. The higher accuracy of MVGC is stable 
at 62.5%. The blue line fluctuates around 0.6, while the yel-
low lines fluctuate around 0.5. The maximum classification 
accuracy of LSTM_GC and MVGC are less than that of 
the GRU-GC.

Difference network

The relationship between each pair of brain regions in the 
causality matrix of HC and EMCI was examined to discover 
the connectivity with significant differences. Because of 162 
subjects in the experiment, the causality between each pair 
of brain regions contained data from 162 samples. The two 
sample T-test was performed on the brain regions corre-
sponding to EMCI and HC, and α = 0.05 was the standard. 
Calculated the DN with 21 causalities in significant differ-
ences in the final. Figure 6(a) represents the DN in which 
EMCI has significantly enhanced causality compared to HC, 
including 18 differences in brain connectivity. Figure 6(b) 
indicates the DN where the causality of EMCI is signifi-
cantly weaker than that of HC, including 3 connectivity 
between different brain regions.

In the significant DN of EMCI, six brain regions showed 
significant influence at the level of information inflow, 
including left supplementary motor area (19), right cuneus 
(46), left lingual gyrus (47), left superior occipital gyrus 
(49), right superior parietal gyrus (60). There are five brain 
regions including the left supplementary motor area, right 
cuneus, left lingual gyrus, and left superior occipital gyrus 
have increased significantly in the information inflow on the 
physiological activities of the brain in EMCI. The brain 
regions in noteworthy differences have no fully weakened 
EC in the information inflow level, such as some of the con-
nectivity about the right superior parietal gyrus was enhanced 
while some of them were decreased. Fifteen brain regions 
with prominent changes at the information outflow level: left 
middle frontal gyrus (orbital part) (9), left supplementary 
motor area (19), left posterior cingulate gyrus (35), right 
parahippocampal gyrus (40), right calcarine fissure and sur-
rounding cortex (44), left lingual gyrus (47), left superior 
occipital gyrus (49), right superior parietal gyrus (60) and 
right temporal pole: superior temporal gyrus (84) et  al. The 
brain regions with significant differences in the level of 

Figure 5. C lassification accuracy. Compare the accuracy of classification using 
the three models: GRU_GC, LSTM_GC and MVGC. The blue, orange and yellow 
lines represent the classification accuracy of effective connectivity matrices 
using GRU-GC, LSTM_GC and MVGC, respectively.

Figure 6.  (a) and (b) show the difference networks of significantly enhanced and decreased brain connectivity in EMCI compared with HC, respectively.
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information inflow and outflow include the left supplemen-
tary motor area (19), left lingual gyrus (47), left superior 
occipital gyrus (49), and right superior parietal gyrus (60).

To further explore the influence of EMCI on brain 
regions, the in-degree and out-degree of the brain regions 
corresponding to the selected effective edges were analyzed. 
The hub nodes in the information of inflow level and out-
flow level as shown in Table 3. After calculating the degree 
of each node in the DN, the hub nodes can be determined. 
If the in-degree of a node is greater than the mean of the 
in-degree of all nodes plus 1/4 variance (i.e., mean + 
1/4*variance), then the node is a hub node. The hub nodes 
of out-degree are obtained in the same way. The standard 
used to measure whether the node is pivotal is to indicate 
the significance of the node change. Figure 7 displays the 
brain regions corresponding to hub nodes.

Features and difference network

The two sample T-test is performed on HC and EMCI and 
obtained the edges E

T
= 21 with the obvious difference. The 

important features E
F
= 36 were obtained when the accuracy 

of the above classification reached the highest. And then 
take the intersection of them to get the edges E = ∩ =E E

T F
9 

with an obvious difference and important effect on classifi-
cation, which are [84, 113, 233, 247, 254, 300, 392, 498, 
541]. The positions of these features on the average matrices 
of EMCI and HC are shown in Figure 8. The 9 features in 
figure respectively represent the effective connectivity 
strength between ROI, including a total of 13 related brain 
regions as shown in Table 4. Figure 9 shows the distribution 
of brain regions that distinguish EMCI from HC.

Discussion

As a neurological disease, the number of patients with 
Alzheimer’s disease has generally increased and attracted 
more and more attention (Alzheimer’s Association, 2018; 
Mckhann, 2011). Since MCI is an intermediate state between 
HC and AD, compared with AD patients and HC patients, 
the neural network of MCI patients may be more delicate 
and converted to AD to a large extent, which makes research 
on EMCI extensive (Khazaee et  al., 2017; Xiaobo et  al., 
2016; Yang et  al., 2019). MCI can be divided into EMCI and 
LMCI. The subtle neural network relationship between 
EMCI and HC makes it challenging to classify HC and 
EMCI effectively and accurately. The abnormal brain activity 
of AD and MCI in 25 brain regions divided according to the 
AAL template has been proved by many scholars using var-
ious methods. This study selected these brain regions as 
ROIs. Simultaneously, Given the complexity of the human 

brain, the level of non-linearity and the related delays in 
rs-fMRI data, the GRU and Granger causality are combined 
and improved to find the more complex nonlinear system 
with delay correlation as much as possible. The GRU_GC 
method was applied to the classification of EMCI patients 
and HC. At the same time, the brain region connectivity 
between EMCI and HC was researched and analyzed to 
explore their differences.

The classification accuracy of EMCI and HC were com-
pared to verify that the GC method added to GRU can play 
a positive role in the diagnosis of EMCI to a certain extent. 
As shown in Table 2, compared with MVGC and LSTM_
GC, GRU_GC can improve the accuracy of classification, as 
well as the sensitivity and specificity. The results showed 
that GRU_GC was superior to MVGC and LSTM_GC in 
identifying patients with EMCI based on rs-fMRI data. It is 
vital for the identification of the EMCI stage and the subse-
quent development of the disease and failure to identify and 
classify correctly can lead to serious consequences, such as 
the delay of critical treatment periods. The ROC curve 
according to Figure 4 (b) shows that the GRU_GC has great 
performance for the classification of EMCI patients and nor-
mal subjects. Since GRU is a successful variant model that 
inherits most characteristics of RNN and LSTM models, it 
has the advantage of dealing with problems that are highly 
related to time series. At the same time, it solves the vanish-
ing gradient problem caused by the gradual reduction in the 
gradient direction propagation process. GRU_GC can learn 
from different lengths of time delays and simulate the logical 
development of human behavior and the cognitive process 
of neural organization realistically. In addition, it does not 
rely on the independent variable regression model, so the 
time series no longer requires random and generalized sta-
bility. It can adapt to linear and non-linear nervous systems 
while reducing the problem of more potential variables. 
Besides, GRU-GC only requires a small set of parameters 
due to the parameters sharing structure of the recurrent 
neural network. In the process of constructing the EC matri-
ces, GRU exerts its advantages in sequence modeling: pass-
ing information selectively, adding or removing information 
transmitted to the cell state in the time sequences, and 
long-term memory. The ability of GRU_GC to more accu-
rately describe the flow of information between brain 
regions. The gate mechanism not only with a positive effect 
on information selection but also can solve gradient explo-
sion and gradient vanishing to a certain extent problem. 
This kind of globalization of time series data can improve 
the localization in input problems that may lose information 
and cause the model to be less accurate. In summary, the 
method utilizes the powerful self-learning ability of neural 
networks to fit and predict time series. The gate mechanism 
in GRU plays an important role in controlling global 

Table 3. T he in-degree and out-degree of the DN and found in the corresponding level of hub nodes. The red represents pivotal nodes between in-degree and 
out-degree.

Brain regions 9 11 14 18 19 22 23 29 31 35 40 42 44 46 47 49 55 58 60 61 66 77 84 86 88

DN In 0 0 1 0 2 0 0 1 1 0 0 0 0 2 2 7 1 0 3 0 1 0 0 0 0
Out 2 0 1 1 1 2 1 0 0 2 2 0 2 0 1 1 1 0 1 0 1 0 2 0 0

In-degree: 19,46,47,49,60 Out-degree: 9,14,18,19,22,23,35,40,44,47,49,55,60,66,84
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information in the model. The reset gate of GRU resets the 
transmission of the previous stage state, and the update gate 
forgets and selects the updated data. Using two gate struc-
tures achieves a better effect than LSTM and dependence on 
hardware computing power. The GRU-based GC method 
can effectively characterize the information flow between 
brain regions, which can play a role in the diagnosis 
of EMCI.

To make the conclusion more convincing, the SVM clas-
sifier was also used for classifying HC and EMCI with three 
methods of constructing the brain effective connectivity 

besides the RF classifier. Two methods were used to elimi-
nate the influence of classifiers. Combined with the classifi-
cation results in Table 2 and Figure 5, the classification 
accuracy of both the RF classifier and the SVM classifier has 
remarkably improved when the results of GRU_GC were 
used. It indicated that the effect of GRU_GC is better than 
LSTM_GC and MVGC, which reveals that the Granger cau-
sality analysis method with GRU has played a positive role 
in the diagnosis of EMCI. Feature selection is necessary 
because feature redundancy will affect the accuracy of the 
classification and increase time consumption. In this study, 
we determined the features according to the importance 
score calculated by the tree-based features selection. It can 
be seen from Figure 4 that the accuracy of the 36 features 
by feature selection can reach 87.88%, which shows that the 
method of LSTM_GC can effectively and accurately distin-
guish between EMCI and HC.

The DN constructed by the two sample T-test on the 
causality between brain regions shows. 21 connectivity in the 
brains of EMCI and HC have noteworthy differences (Figure 
6). 22 causalities between EMCI brain regions were obvi-
ously enhanced (Figure 6(a)) and the remaining 3 connec-
tivity were significantly decreased (Figure 6(b)). According 
to the DN, the brain region nodes in the brain network 
were found (Figure 7), temporal pole: superior temporal 
gyrus, and superior parietal gyrus respectively belong to the 
temporal lobe and the parietal lobe. The frontal lobe includes 
the middle frontal gyrus (orbital part), supplementary motor 
area and olfactory cortex, the limbic lobe contains the para-
hippocampal gyrus and posterior cingulate gyrus. The cal-
carine fissure and surrounding cortex, cuneus, lingual gyrus 
and superior occipital gyrus belong to the occipital lobe.

In order to further explore the brain function differences 
between EMCI and HC, the intersection of the 36 important 
features and 21 significantly different causality was conducted 
through two sample T-tests to obtain 9 important causality 

Figure 7. T here are 16 brain nodes in the figure. The blue, green and red 
nodes represent the brain nodes with significant differences in the information 
inflow level, information outflow level and the two levels of the EMCI difference 
network, respectively.

Figure 8.  Both axes are 25 brain regions, (a) and (b) represent the average effective connectivity matrices of 89 EMCI subjects and 73 HC subjects, respectively, 
the green stars in the figure indicate features that are significantly different and play an important role in classification.
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relationships. The map of EC about two groups is shown in 
Figure 8, it can be seen from the figure that most of the 
connectivity of EMCI were stronger than HC while only four 
connectivity of EMCI were weaker than HC. Figure 9 shows 
the 9 connectivity between different brain regions. It is seen 
that the great part of the enhanced connectivity occurs in or 
is associated with the right brain, the connectivity includes 
from the right calcarine fissure and surrounding cortex to 
the right cuneus, from the right parahippocampal gyrus to 
the left superior occipital gyrus, from right parahippocampal 
gyrus to left insula, from left supplementary motor area to 
right superior parietal gyrus, from right temporal pole: supe-
rior temporal gyrus to right cuneus and from right Rolandic 
operculum to the right cuneus. Compared with the HC 
group, the connectivity of EMCI was generally stronger, espe-
cially in the right brain and the most remarkable changes 
were related to connectivity in the parahippocampal gyrus. In 
these connectivities, the causality related to the 

parahippocampal gyrus showed a trend of enhancement. The 
parahippocampal gyrus is involved in associative learning 
and episodic memory (Maddock et  al., 2001). In EMCI, EC 
enhancement may be due to the presence of signal transmis-
sion compensation problems in brain regions. As the activity 
of some brain regions is reduced, the signal transmission 
between other brain regions is strengthened. As an early 
stage of MCI, EMCI has similarities with AD, and the con-
nection between the parahippocampal gyrus has significant 
changes. As shown in Table 4, the Rolandic operculum and 
supplementary motor area belong to the frontal cortex. 
Language, numeracy skills (Kimberg & Farah, 1993) and 
decision-making (Yang et  al., 2017) which are all controlled 
by the frontal lobe. Dopamine neurons are mostly located in 
the midbrain, and midbrain cortical projections affect cogni-
tive functions during planning, short-term memory tasks, 
execution, and attention mechanisms of frontal cortical activ-
ity. The superior temporal gyrus belongs to the temporal 
pole, which is mainly related to memories and emotions.

The connectivity of EMCI from left posterior cingulate 
gyrus to right superior parietal gyrus, from left fusiform 
gyrus to left anterior cingulate and paracingulate gyri and 
from right angular gyrus to right superior parietal gyrus to 
left fusiform gyrus are weakened. The fusiform gyrus (55) 
plays an important role in advanced visual processing and 
recognition and its functions may include processing color 
information and recognizing and classifying the face, body 
and font. The posterior cingulate gyrus (PCC) is the corti-
cal part of the limbic system. Structural and functional 
abnormalities in the PCC result in a range of neurological 
and psychiatric disorders, including Alzheimer’s disease 
(Scheff et  al., 2015), autism, hyperactivity disorder, major 
depression, traumatic brain injury, and anxiety disorders 

Table 4. T he numbers behind each brain region are the serial numbers of the 
corresponding AAL template. The first column contains the number of ROIs in 
the brackets.

Brain regions

Frontal lobe (2) Rolandic operculum (18), Supplementary 
motor area (19)

Temporal lobe (2) Fusiform gyrus (55), Temporal pole: 
superior temporal gyrus(84)

Parietal lobe (2) Superior parietal gyrus (60)
Occipital lobe (3) Calcarine fissure and surrounding cortex 

(44), Cuneus (46), Superior occipital 
gyrus (49)

Limbic lobe (3) Anterior cingulate and paracingulate gyri 
(31), Posterior cingulate gyrus (35), 
Parahippocampal gyrus (40)

Else (2) Insula (29), Angular gyrus (66)

Figure 9. T he figure shows the strength of 9 effective connectivity between different brain regions. The nodes in the figure represent different brain regions. The 
edges between brain regions represent effective connectivity and the arrows on the edges represent from cause to effect. The thickness and color of the line 
represent the strength of the connectivity.
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(Leech & Sharp, 2013; Oblak et  al., 2011). The PCC likely 
integrates and mediates information in the brain. Therefore, 
functional abnormalities of the PCC might be an accumu-
lation of remote and widespread damage in the brain. The 
parahippocampal gyrus and posterior cingulate gyrus are all 
part of the limbic system. The connectivity between the 
three brain regions showed a trend of weakening and 
change obviously, which indicated that EMCI might have 
changes of significantly weakening of EC in the limbic sys-
tem. From the comparison between EMCI and HC in 
Figure 9, it can be directly observed that the lines of HC 
are generally thin and cool in color, which tends to be blue. 
While compared with HC, most of the connection lines in 
the EMCI group are generally thick and bright colors, the 
color tending to yellow or red. By comparison, it was found 
that the difference in lines between the two groups of EMCI 
and HC in Figure 9. The lines intuitively reflected the note-
worthy difference in the effective connectivity between the 
25 brain regions, indicating that the EMCI patients may 
have changes in these regions. In this work, we examined 
the effectiveness of the GRU_GC model in diagnosing 
EMCI patients. The results indicated that the GRU_GC 
model can better investigate the EC of EMCI as compared 
to other models (e.g., LSTM_GC and MVGC) as shown in 
Table 2. We hope that our method can be applied to more 
fields of psychiatric disorders. In the comparison experi-
ments, we have not yet validated more effective connectivity 
methods, such as dynamic causal modeling, which can be 
further validated in the follow-up work. In addition, we 
introduced a recurrent neural network in the Granger cau-
sality model to obtain the relationship between brain 
regions, and the effective connectivity method and model 
framework based on GC can be further optimized in the 
future. We can try to introduce newer structures or neural 
networks such as graph neural networks to improve the 
identification of effective connectivity between brain regions.

Conclusion

EMCI and HC can be effectively classified by constructing 
effective connectivity for the subjects with GRU_GC. The 
GRU_GC model can acquire non-linear connectivity with 
different time delays in the signal because of the powerful 
time series modeling capabilities in the GRU model. 
Compared with LSTM_GC and MVGC, this model shows its 
significant superiority. Furthermore, according to EC matri-
ces, the difference network of causality between the two 
groups of subjects is constructed. The results showed that 
there were noteworthy differences between EMCI and HC in 
parahippocampal gyrus and posterior cingulate gyrus. In 
conclusion, it shows that GRU_GC can play an important 
role in classification and brain region diagnostic analysis. 
The model can be used as a practical significant diagnostic 
method for mild cognitive impairment diseases.Notes
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